• <tr id='NGq6GG'><strong id='NGq6GG'></strong><small id='NGq6GG'></small><button id='NGq6GG'></button><li id='NGq6GG'><noscript id='NGq6GG'><big id='NGq6GG'></big><dt id='NGq6GG'></dt></noscript></li></tr><ol id='NGq6GG'><option id='NGq6GG'><table id='NGq6GG'><blockquote id='NGq6GG'><tbody id='NGq6GG'></tbody></blockquote></table></option></ol><u id='NGq6GG'></u><kbd id='NGq6GG'><kbd id='NGq6GG'></kbd></kbd>

    <code id='NGq6GG'><strong id='NGq6GG'></strong></code>

    <fieldset id='NGq6GG'></fieldset>
          <span id='NGq6GG'></span>

              <ins id='NGq6GG'></ins>
              <acronym id='NGq6GG'><em id='NGq6GG'></em><td id='NGq6GG'><div id='NGq6GG'></div></td></acronym><address id='NGq6GG'><big id='NGq6GG'><big id='NGq6GG'></big><legend id='NGq6GG'></legend></big></address>

              <i id='NGq6GG'><div id='NGq6GG'><ins id='NGq6GG'></ins></div></i>
              <i id='NGq6GG'></i>
            1. <dl id='NGq6GG'></dl>
              1. <blockquote id='NGq6GG'><q id='NGq6GG'><noscript id='NGq6GG'></noscript><dt id='NGq6GG'></dt></q></blockquote><noframes id='NGq6GG'><i id='NGq6GG'></i>
                【校内主页】 【邮箱登陆】 【智慧校园】
                公共搜索

                关于厦门大学白正简教授来校讲学的通知


                应数学与计算科学学院及广西高校数据分析与计▲算重点实验室邀请,厦门大学白正简教授将于2020年11月5日下午↑到我校讲学,欢迎全校师生踊跃参加々。报告具》体安排如下:

                题目:Riemannian Newton-CG Methods for Constructing a Positive Doubly Stochastic

                Matrix from Spectral Data
                时间:2020年11月5日(周四)下午15:00

                地点:花江校区第六教学楼6306报告厅

                摘要:

                In this paper, we consider the inverse eigenvalue problem for the positive doubly stochastic matrices, which aims to construct a positive doubly stochastic matrix from the prescribed realizable spectral data. By using the real Schur decomposition, the inverse problem is written as a nonlinear matrix equation on a matrix product manifold. We propose monotone and nonmonotone Riemannian inexact Newton-CG methods for solving the nonlinear matrix equation. The global and quadratic convergence of the proposed methods is established under some assumptions. We also provide invariant subspaces of the constructed solution to the inverse problem based on the computed real Schur decomposition. Finally, we report some numerical tests, including an application in digraph, to illustrate the effectiveness of the proposed methods.

                主讲人简介:

                白正简,2004年于香港︼中文大学获得博士学位,现为厦门大学数学学院教授、博士生导▃师、教育部“新世纪优秀人才支持计划”入选者。主要研究方向包括数值线性代数、矩阵特征值反问题、非线性特征值问题以及矩阵流▲形上的优化算法等,已在包括SIAM J. Numer. Anal., SIAM J. Matrix Anal. Appl., SIAM J. Sci. Comput., Inverse Problems, Numerische Mathematik, Mech. Syst. Signal Process.等国际著名期刊上发表SCI收ξ 录学术论文50余篇,曾多次应邀在国内外学术会议上作邀请报告或分组报告。曾主持国家自然科学基金青年项目1项和面上项目2项,福建省杰出青年科√学基金,教育部留学回国人员科研启动基金等项目。曾获得2009年度福建省科学技术奖二等奖。2014年在高等教育出版社合著出版《高等线性∏代数学》。




                下一条: 关于蒙纳什大学副研究员、中南大学特聘副教授吴嘉来ㄨ校讲学的通知(图)

                【打印新闻】 【关闭】